Moon mission, India/ Chandrayaan

From Indpaedia
(Difference between revisions)
Jump to: navigation, search
(Chandrayaan 2)
(Why the July 2019 launch was postponed)
Line 204: Line 204:
  
 
Isro has entered the last leg of testing of Chandrayaan-2 with integration nearly complete. Final tests are happening at Mahendragiri in Tamil Nadu and Byalalu in Bengaluru. The agency is looking at a July 9 launch. As part of Isro’s present schedule, spacecraft will leave Bengaluru on June 19, and reach the launchpad in Sriharikota on June 20 or 21. From 3D mapping to finding water molecules, and from checking out minerals to landing where nobody has landed, scientists say Isro has prepared to land a “dream on the Moon”.
 
Isro has entered the last leg of testing of Chandrayaan-2 with integration nearly complete. Final tests are happening at Mahendragiri in Tamil Nadu and Byalalu in Bengaluru. The agency is looking at a July 9 launch. As part of Isro’s present schedule, spacecraft will leave Bengaluru on June 19, and reach the launchpad in Sriharikota on June 20 or 21. From 3D mapping to finding water molecules, and from checking out minerals to landing where nobody has landed, scientists say Isro has prepared to land a “dream on the Moon”.
 +
 +
==Technology==
 +
===The Cryogenic Upper Stage===
 +
[https://timesofindia.indiatimes.com/india/how-isro-toiled-for-years-to-develop-cryo-engine-to-power-bahubali/articleshow/70337842.cms  Surendra Singh, July 23, 2019: ''The Times of India'']
 +
 +
 +
[[File: The ABC of cryogenic upper stage.jpg|The ABC of cryogenic upper stage <br/> From: [https://epaper.timesgroup.com/Olive/ODN/TimesOfIndia/shared/ShowArticle.aspx?doc=TOIDEL%2F2019%2F07%2F23&entity=Ar00209&sk=BC57B4ED&mode=image  July 23, 2019: ''The Times of India'']|frame|500px]]
 +
 +
'''See graphic''':
 +
 +
'' The ABC of cryogenic upper stage ''
 +
 +
 +
'''How Isro toiled for years to develop cryo engine to power ‘Bahubali''''
 +
 +
SRIHARIKOTA: A technical snag in the cryogenic stage of the GSLV-MkIII rocket carrying Chandrayaan-2 module had stalled Isro’s launch of the moon mission on July 15. Though the space agency successfully launched the mission in its second attempt after taking great efforts to fix the snag, the moot question is why it is so difficult to deal with a snag in the cryogenic upper stage of GSLV Mk III, popular as 'Bahubali' + .
 +
 +
To know about the cryo stage snag, first an understanding of the art of cryogenics is needed. Among all rocket fuels, hydrogen is known to provide enormous thrust as compared to solid and earth-storable liquid propellants. But hydrogen in its natural gaseous form is difficult to store and handle, and is, therefore, not used in normal engines like that of PSLV. However, hydrogen in liquid form can be stored in a rocket engine but that requires it to be maintained at a very low temperature — minus 253 degrees Celsius. And to burn the liquid fuel, oxygen too needs to be in liquid form — minus 187 degrees Celsius. Creating an atmosphere of such low temperatures in the rocket is quite challenging as it creates problem for other materials.
 +
 +
Over 25-30 years ago, Isro was desperate to develop the cryogenic technology for its GSLV rocket in order to lift heavier payload of over 3-4 tonnnes into the geo orbit at 36,000km altitude, from where it could send its spacecraft to deep space or other planets. This was because Isro’s mainstay rocket PSLV without a cryogenic engine, could deliver payload only up to 1.7 tonne to the lower earth orbit up to an altitude of 600 km. It could go to geo tranfer orbit but at reduced payload. Though PSLV was used for launching India’s first moon mission Chandrayaan-1 in 2008 and Mars Orbiter Mission in 2014, in both the cases the payload was not above 1.4 tonne.
 +
 +
In early 1990s, India had approached the US, Soviet Union, Japan and France for cryo technology. Only Soviet Union came forward. But Moscow too stepped back when the US cited a violation of the international Missile Technology Control Regime (MTCR) to threaten it and imposed sanctions on Isro and Soviet Union's launch service provider Glavkosmos. Though the US threat stalled the transfer of Russian cryo technology, India still managed to import seven such engines from Glavkosmos. The engines were used to launch initial versions of GSLV rockets. But desperate to have an indigenous technology, Isro scientists worked tirelessly for over two decades to develop its own cryo engine. Being a complex system, Isro still faces some hiccups in its cryo stage like the July 15 snag.
 +
 +
The July 15 glitch was due to a leak in helium bottle joint in the cryo upper stage (Helium is used to maintain pressure in the cryogenic chamber). The leak occurred after the propellant tanks were filled with liquid hydrogen, the fuel, and liquid oxygen, the oxidiser. With the pressure not holding in the cryogenic chamber, the mission control centre had no option but to call off the liftoff.
  
 
==Why the July 2019 launch was postponed==
 
==Why the July 2019 launch was postponed==
Line 222: Line 246:
  
 
More than 7,000 people from across the country had gone to the Sriharikota spaceport to witness the Monday launch. President Ram Nath Kovind was with senior Isro scientists at the mission control centre when the launch was called off at 1.55am.
 
More than 7,000 people from across the country had gone to the Sriharikota spaceport to witness the Monday launch. President Ram Nath Kovind was with senior Isro scientists at the mission control centre when the launch was called off at 1.55am.
 +
 +
==Making lunar spacecraft think and act==
 +
[https://epaper.timesgroup.com/Olive/ODN/TimesOfIndia/shared/ShowArticle.aspx?doc=TOIDEL%2F2019%2F07%2F23&entity=Ar00203&sk=03C99CF5&mode=text  U Tejonmayam, July 23, 2019: ''The Times of India'']
 +
 +
 +
Within a week after Chandrayaan-1 was launched in 2008, scientists had to abort a manoeuvre of the spacecraft as all ground stations lost visibility. But that did not hamper the mission, as the spacecraft used its own electronic brain fed with commands in advance to manoeuvre on its own. Six years later, it is with the same ebrain that Mangalyaan found its way to Mars by correcting its altitude and the position of its antenna and solar panels during its 300-day journey. Rocket science calls it autonomy.
 +
 +
With Chandrayaan-2, Isro will once again demonstrate its mastery over autonomy when Vikram will soft land on the south pole on its own sans intervention from ground control. And that is going to keep India in good stead as Isro plans future interplanetary missions.
 +
 +
“It’s like an aircraft on auto-pilot. Vikram will have only one chance. It has to see the landing place correctly, reduce its velocity and land with minimal impact,” said Chandrayaan-1 project director Mylsamy Annadurai.
 +
 +
Rover Pragyan, too, will work on its own. It will have the ability to ‘think’ it is not in the right position and move back to its last step if it does not receive commands from the ground station.
 +
 +
India has planned seven inter-planetary missions in the next 10 years, starting with Xposat to study cosmic radiation in 2020, Aditya L1 to Sun in 2021, Mars Orbiter Mission-2 in 2022, a date with Venus in 2023, Lunar Polar Exploration or Chandrayaan-3 in 2024 and Exoworlds, an exploration outside the solar system, in 2028.
 +
 +
Simultaneously, as it adds more satellites to meet its demands, monitoring and controlling from the ground could become humanly impossible. Injecting smarter satellites into orbit meant it can decide autonomously what, when and how to carry out operational tasks, like capturing images of Earth, analyse and process them before selecting important data for downloading to the earth station. This also allows satellites to communicate with each other and do tasks like identifying a target to be monitored continuously, like a moving vehicle.
 +
 +
“This is an electronics revolution. It simply puts intelligence into a satellite,” said TK Alex, former director of UR Rao Satellite Centre. “On the software side, India is on the top.”
  
 
[[Category:India|C CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)
 
[[Category:India|C CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)CHANDRAYAAN (INDIA’S MOON MISSION)

Revision as of 16:45, 13 January 2021

This is a collection of articles archived for the excellence of their content.
Additional information may please be sent as messages to the Facebook
community, Indpaedia.com. All information used will be gratefully
acknowledged in your name.


Contents

Why does India/ the world want moon missions?

The rationale

Surendra Singh, July 2, 2019: The Times of India


July 16, the day after India’s Chandrayaan-2 lifts off from Sriharikota, marks the 50th year of the launch of Nasa’s Apollo-11, the mission that took US astronauts Neil Armstrong and Buzz Aldrin to Moon. Half a century later, why Chandrayaan-2? Are we reinventing the wheel?

Similar questions were raised before Chandrayaan-1 mission (which involved only an orbiter) in 2008. But India’s first Moon mission silenced critics when it found evidence of water ice on lunar surface. The mission cost India Rs 386cr — a fraction of what the US and the USSR had spent on similar missions. Chandrayaan-2, involving an orbiter, a lander and a rover this time, will expand the ambit of India’s first lunar probe and perhaps have some surprise finds.

The first object from Earth to kiss Moon was USSR’s Luna-2 craft, on Sept 14, 1959. Under the Luna programme, USSR sent a series of robotic craft missions to Moon between 1959 and 1976, which cost $4.5 billion.

Joining the Moon race, US started the Apollo programme and 10 years later, Armstrong and Aldrin became the first humans to step on Moon, on July 20, 1969. From 1968 to 1972, Nasa launched 11 spaceflights to the Moon and a total of 12 astronauts walked on Moon. The missions cost the $25 billion, considered to be the most expensive lunar programme.

A GSLV-MIII carrying Chandrayaan-2 will lift off on July 15, and its lunar-rover module, which will cover a distance of 384,400km to reach the lunar orbit, is expected to land on the south pole of Moon, which remains virtually unexplored.

The pioneers are also getting back to the game. Fifty years after the Moon race during the Cold War era, the US and Russia have revived their Moon programmes. China and Israel, too, have the jumped on the lunar bandwagon.

In May this year, Nasa awarded $253 million to three US firms to develop robotic landers that will carry payloads to Moon as a prelude to its Artemis programme to return astronauts to Moon by 2024. Russia also plans to land cosmonauts on Moon by 2030. In January this year, China’s Chang’e-4 probe made a historic landing on the far (dark) side of Moon that always faces away from Earth and has a rugged terrain with several impact craters. After Chang’e-4 success, China announced plans to follow up with three more missions, laying the groundwork for a lunar base.

In February this year, Israel launched its first lunar mission ‘Beresheet’ with the help of SpaceX launcher Falcon 9. Though the module, a joint venture of startup SpaceIL and state-run space agency, successfully reached the lunar orbit, it crashed on Moon. A determined Israel has now started working on Beresheet 2.0 programme.

Private players, too, are eyeing Earth’s natural satellite. The Elon Musk-led SpaceX has unveiled plans for a spacecraft that would allow the company to build a base on Moon and colonise Mars. Jeff Bezosowned Blue Origin is working on a spacecraft (Blue Moon) that will be used to transport scientific equipment and humans to Moon by 2024. For mankind, the love for Moon or Chandamama never wanes.


The road to the Chandrayaan mission

Chethan Kumar, July 4, 2019: The Times of India


After centuries of romanticising the Moon, mankind has been dreaming of colonising it. As our search for habitable planets still revolves around Mars, however, more space scientists are looking at Earth’s natural satellite as a layover point or a launchpad to farther expeditions.

India, which will launch its second lunar mission (Chandrayaan-2) + on July 15, has been conducting research on various aspects of Moon, including building habitats there. We are interested in sending people to the Moon, Isro chairman K Sivan had said.

Among some serious work by the US, Europe and China is one on using local material to build structures on Moon and building bigger rockets to transport instruments and people. Nasa is leading most of these efforts, with 2028 as the target year, while the European Space Agency is burning the midnight oil on Moon projects.

M Annadurai, the man behind Chandrayaan-1, earlier told TOI: “There’s serious thinking to use Moon as an outpost, just like missions in Antarctica. In the longrun, the space station is likely to be scrapped, and countries including the US are seriously considering building structures more permanent on Moon and working out of there. When it happens, we want India to have contributed.”

Isro has been thinking of building “igloos” on Moon. Earlier this year, Nasa administrator Jim Bridenstine said: “We’ll go to Moon in the next decade. When we go, we will stay. We’ll use what we learn as we move forward to Moon to take the next giant leap – sending astronauts to Mars.”

Senior space scientist P S Goel, however, is not so optimistic about such ventures in the near future. “Colonising Moon is slightly far-fetched as of now. But, using it as a transit point seems more realistic in the next five to ten decades. There are several engineering challengeslike how to generate energy for one—that must be overcome,” he told TOI.

China, which has soft-landed on Moon’s ‘dark side’, has been making significant strides. Scientists agree that humans on future lunar missions will be spending way more time than any of the Apollo missions (US has had 12 of them) did. But a lot of work is yet to be done to accommodate humans there, and this will be done in collaboration with serious space-faring nations combined with big private players like SpaceX.

A senior scientist advising Isro said that in the next few decades, Moon will see a lot of action, but, given the cost, countries cannot do it alone. “It has to be a collaboration, and India can earn a seat at the high table with Chandrayaan-2. You’ll also see big private participation,” he said.

Research and development

How to land on the moon

U Tejonmayam, July 10, 2019: The Times of India

How Chandrayaan 2 intends to land on the moon
From: U Tejonmayam, July 10, 2019: The Times of India

For India’s second date with the Moon, expected in the first week of September, Isro scientists have swiped left and right through 3,500 images in search of the right place for the rendezvous near the lunar south pole.

Here, they hope to find clues to the origin and early history of not just the Moon, but Earth and some other members of the solar system as well. Also expected is more evidence of water.

Scientists studied data from Nasa’s Lunar Reconnaissance Orbiter and Japan’s Kaguya Lunar Orbiter to stitch together mosaics and study craters, boulders and slopes. Images of the lunar surface captured by instruments aboard Chandrayaan-1 including terrain mapping camera, hyperspectral imager, lunar laser ranging instrument, moon mineralogy mapper and synthetic aperture radar also came in handy.

“Chandrayaan-1 mapped the entire moon when the orbiter went around for nine months,” said Mylsamy Annadurai, who was the project director of Chandrayaan-1. The orbiter high resolution camera (OHRC) onboard Chandrayaan-2 orbiter will again study the landing site to detect hazards like boulders up to 32cm.

In a paper presented at the 49th Lunar and Planetary Science Conference 2018, Isro scientists said two potential sites were identified— a primary site between the two craters Manzinus and Simpelius, located 350km north of the south pole Aitken basin rim and a second site nearby.

China was the first country to land on the far side of the moon, on a crater about 180km from south pole Aitken basin. “As solar energy powers the system, a place with good visibility and area of communication was needed. Also, the place should not have many boulders or craters. The slope for landing should be less than 12 degrees. The south pole has a near-flat surface, with good visibility and sunlight,” said Isro chairman K Sivan.

The lunar south pole is especially interesting because a larger section of its surface stays in the shadow, which means a higher probability of finding water. The region also has craters that are ‘cold traps’ containing fossilised records of the early solar system, Isro said in a web post.

Accuracy is the key. “We are travelling about 3,84,000km from Earth. Even if we have an error of 1km on the landing site, all these factors should hold good,” Annadurai said. A study by Physical Research Laboratory on the topography of the landing ellipse revealed that 23,605 craters are present, including 12,600 craters with a diameter greater than 10m and 11 craters with greater than 500m diameter. The landing ellipse is generally flat with the primary landing site devoid of craters with significant depth.

Vikram has to soft-land without causing much disturbance. Lunar dust can stick to the instruments, affecting deployment of solar panel, sensors and navigational aids. The less the hovering time, the less the disturbance, said PRL scientists.

Chandrayaan 1

See graphic:

Decision making process of Chandrayaan- I

'Lost' in 2009; NASA finds it orbiting Moon in 2017

Srinivas Laxman, Chandrayaan-1 found by Nasa after 8 years, March 11, 2017: The Times of India


Eight years after it was considered “lost“, India's first lunar spacecraft, Chandrayaan-1, has been “re-discovered“ by Nasa's ground-based radars, the American space agency announced.

Chandrayaan-1, launched on October 22, 2008, was credited with the first discovery of water on the moon on November 14. After that, it suddenly lost communication with Isro ground stations on August 29, 2009 due to a technical problem. Speculation was rife at Isro then that it had crashed on the moon.

But nine years since its launch, a new radar technology pioneered by scientists at Nasa's Jet Propulsion Laboratory (JPL) was put into place to trace Nasa's Lunar Reconnaissance Orbiter and Chandraya an-1. “This technique could assist planners of future moon missions,“ Nasa said.

JPL's orbital calculations indicated that Chandrayaan-1 was still circling 200km above the lunar surface. The father of India's moon mission, Krishnaswamy Kasturirangan, told TOI, “To be declared lost and then found after eight years is a great accomplishment.“ Chandrayaan-1 was our first interplanetary mission, and I am delighted that it has been found,“ Kasturirangan said.

According to Nasa, the main challenge in detecting Chandrayaan-1 was on account of its size; the spacecraft is very small, a cube of about 1.5 metres on each side -about half the size of a smart car. It has not been transmitting signals.

According to Nasa, to find the spacecraft 3.80 lakh km away , the Jet Propulsion Laboratory (JPL) team used its 70-metre antenna at the Goldstone Deep Space Communications Complex in California.

A powerful beam of microwaves was directed towards the moon. The radar echoes then bounced back from the lunar orbit, which were received by the 100-metre Green Bank telescope in West Virginia in the US, Nasa said.

The radar team utilised the fact that Chandrayaan-1 is in polar orbit around the moon. So, it would always cross above the lunar poles on each orbit. On July 2, 2016, the team pointed Goldstone and Green Bank at a location 160km above the moon's north pole and waited to see if Chan drayaan-1 crossed the radar beam. Chandrayaan-1 was predicted to complete one orbit around the moon every two hours and eight minutes. Nasa said that the timing of the detections matched the time it would take for Chandrayaan-1 to complete one orbit and return to the same position above the moon's pole.

Help in creation of first global map of water in Moon's soil

India's Chandrayaan-1 helps scientists map water on Moon, Sep 14, 2017: The Times of India


HIGHLIGHTS

The water concentration reaches a maximum average of around 500 to 750 parts per million in the higher latitudes

NASA's Moon Mineralogy Mapper flew aboard India's Chandrayaan-1 spacecraft

Although the bulk of the water mapped in this study could be attributed to solar wind, there were exceptions

NEW YORK: Using newly-calibrated data taken from NASA's Moon Mineralogy Mapper, which flew aboard India's Chandrayaan-1 spacecraft, scientists have created the first global map of water in the Moon's soil.

The study, published in the journal Science Advances, builds on the initial discovery in 2009 of water and a related molecule - hydroxyl, which consists of one atom each of hydrogen and oxygen - in lunar soil.

"The signature of water is present nearly everywhere on the lunar surface, not limited to the polar regions as previously reported," said the study's lead author Shuai Li, who performed the work while a PhD student at Brown University in Providence, Rhode Island, US.

"The amount of water increases toward the poles and does not show significant difference among distinct compositional terrains," Li, now a postdoctoral researcher at University of Hawaii, added.

The water concentration reaches a maximum average of around 500 to 750 parts per million in the higher latitudes. That is not a lot - less than is found in the sands of Earth's driest deserts - but it is also not nothing.

"This is a roadmap to where water exists on the surface of the Moon," study co-author Ralph Milliken, Associate Professor at Brown University said.

"Now that we have these quantitative maps showing where the water is and in what amounts, we can start thinking about whether or not it could be worthwhile to extract, either as drinking water for astronauts or to produce fuel," Milliken said.

The way the water is distributed across the Moon gives clues about its source, the researchers said. The distribution is largely uniform rather than splotchy, with concentrations gradually decreasing toward the equator, the study said. That pattern is consistent with implantation via solar wind - the constant bombardment of protons from the Sun, which can form hydroxyl and molecular water once emplaced.

Although the bulk of the water mapped in this study could be attributed to solar wind, there were exceptions. For example, the researchers found higher-than-average concentrations of water in lunar volcanic deposits near the Moon's equator, where background water in the soil is scarce.

Rather than coming from solar wind, the water in those localised deposits likely comes from deep within the Moon's mantle and erupted to the surface in lunar magma. The study also found that the concentration of water changes over the course of the lunar day at latitudes lower than 60 degrees, going from wetter in the early morning and evening to nearly bone dry around lunar noon.

The fluctuation can be as much as 200 parts per million. As useful as the new maps may be, they still leave plenty of unanswered questions about lunar water. The Moon Mineralogy Mapper, which supplied the data for the research, measures light reflected off of the lunar surface. That means that it can't look for water in places that are permanently shadowed from the sun's rays.

Many scientists think these permanently shadowed regions, such as the floors on impact craters in the Moon's polar regions, could hold large deposits or water ice. "Those ice deposits may indeed be there, but because they are in shadowed areas it's not something we can easily confirm using these data," Milliken said.

Nasa probe finds water distributed across lunar surface

Srinivas Laxman, Water distributed across lunar surface: Nasa probe on Chandrayaan-1, February 26, 2018: The Times of India


An analysis of data from India’s first mission to the moon, Chandrayaan-1, and Nasa’s Lunar Reconnaissance Orbiter (LRO) has found evidence that the moon’s water is distributed across the lunar surface and not confined to a particular region or type of terrain as stated earlier.

The water appears to be present day and night, though it’s not necessarily easily accessible, said Nasa in a statement. The space agency added that they derived the conclusion after obtaining data from a diviner instrument on the LRO. Nasa has stated that the new data was obtained from the diviner instrument on LRO. “The team applied this temperature model to data gathered earlier by the moon mineralogy mapper, a visible and infrared spectrometer that NASA’s Jet Propulsion Laboratory in Pasadena, California, provided for India’s Chandrayaan-1 orbiter,” it has stated.

“The findings could help researchers understand the origin of the moon’s water and how easy it would be to use as a resource. If the moon has enough water, and if it’s reasonably convenient to access, future explorers might be able to use it as drinking water or convert it into hydrogen and oxygen for rocket fuel or oxygen to breathe,” reads the statement.

The results contradict some earlier studies, which had suggested that more water was detected at the moon’s polar latitudes and that the strength of the water signal waxes and wanes according to the lunar day (29.5 Earth days). “We find that it doesn’t matter what time of the day or which latitude we look at, the signal indicating water always seems to be present,” said Joshua Bandfield, a senior research scientist with the Space Science Institute in Boulder, Colorado, and lead author of the new study published in Nature GeoScience.

Chandrayaan-1 device finds ice on moon surface

Chandrayaan-1 device found ice on moon surface: Nasa, August 22, 2018: The Times of India


Scientists have confirmed the presence of frozen water deposits in the darkest and coldest parts of the moon’s polar regions using data from the Chandrayaan-1 spacecraft, which was launched by India 10 years ago, Nasa said on Tuesday.

With enough ice within the top few millimetres of the surface, water would possibly be accessible as a resource for future expeditions to explore and even stay on the moon, and potentially easier to access than water detected beneath the surface. The ice deposits are patchily distributed and could be ancient, according to a study published in the journal PNAS.

The scientists used data from Nasa’s moon mineralogy mapper, an instrument carried on Chandrayaan-1, to identify three specific signatures that definitively prove the presence of ice. Learning more about it will be a key focus for Nasa and its commercial partners.

Chandrayaan 2

History

Chethan Kumar, India’s tryst with Moon: 10 years and two missions, October 21, 2018: The Times of India


At 6.22am on October 22, 2008, the PSLV carrying Chandrayaan-1 roared into the sky paving the way for the future of India’s endeavours for planetary exploration. And, on November 8 that year, Chandrayaan-1 reached the polar orbit around the Moon.

M Annadurai, called the Moon-man of India recollects: “On November 14, in the presence of then Indian President APJ Abdul Kalam, we commanded a tiny Moon Impact Probe (MIP) to detach from the mother craft targeting to touch down the moon after 27 minutes of flight into the atmosphere of the moon. While climbing down to the lunar surface one of the science equipment onboard the MIP, namely CHACE— a mass spectrometer—started indicating the presence of water (vapour) in the moon’s atmosphere.”

The signal then got more pronounced when the probe was going nearer to moon’s surface. The presence of water near moon was considered to be sourced from the lunar surface. So remaining instruments on board Chandrayaan-1 mother craft were programmed to look for presence of water on the Lunar surface. Untitled design (96)

The search was for the entire surface of the moon. Accordingly Chandrayaan-1 paved the way for deriving Lunar Map with water resources (see pic). “Discovery of ice on the poles of the moon is also credited to the Chandrayaan-1. When another set of International Scientists used Chandrayaan-1 data for their research again the claim was once again got confirmed,” Annadurai said.

Chandrayaan-1 received three international awards , one each for Discovery of water on the moon, Spacecraft Design and compact accommodation of 11 Science instruments and the very high level of international co-operation that paved the way for new wave in planetary exploration.

2019: The planned path

Chandrayaan 2: The planned path
From: June 13, 2019: The Times of India

See graphic:

Chandrayaan 2: The planned path

2019: The mission

Chethan Kumar, June 11, 2019: The Times of India

7 challengers of the Moon landing
From: Chethan Kumar, June 11, 2019: The Times of India

Isro has entered the last leg of testing of Chandrayaan-2 with integration nearly complete. Final tests are happening at Mahendragiri in Tamil Nadu and Byalalu in Bengaluru. The agency is looking at a July 9 launch. As part of Isro’s present schedule, spacecraft will leave Bengaluru on June 19, and reach the launchpad in Sriharikota on June 20 or 21. From 3D mapping to finding water molecules, and from checking out minerals to landing where nobody has landed, scientists say Isro has prepared to land a “dream on the Moon”.

Technology

The Cryogenic Upper Stage

Surendra Singh, July 23, 2019: The Times of India


The ABC of cryogenic upper stage
From: July 23, 2019: The Times of India

See graphic:

The ABC of cryogenic upper stage


How Isro toiled for years to develop cryo engine to power ‘Bahubali'

SRIHARIKOTA: A technical snag in the cryogenic stage of the GSLV-MkIII rocket carrying Chandrayaan-2 module had stalled Isro’s launch of the moon mission on July 15. Though the space agency successfully launched the mission in its second attempt after taking great efforts to fix the snag, the moot question is why it is so difficult to deal with a snag in the cryogenic upper stage of GSLV Mk III, popular as 'Bahubali' + .

To know about the cryo stage snag, first an understanding of the art of cryogenics is needed. Among all rocket fuels, hydrogen is known to provide enormous thrust as compared to solid and earth-storable liquid propellants. But hydrogen in its natural gaseous form is difficult to store and handle, and is, therefore, not used in normal engines like that of PSLV. However, hydrogen in liquid form can be stored in a rocket engine but that requires it to be maintained at a very low temperature — minus 253 degrees Celsius. And to burn the liquid fuel, oxygen too needs to be in liquid form — minus 187 degrees Celsius. Creating an atmosphere of such low temperatures in the rocket is quite challenging as it creates problem for other materials.

Over 25-30 years ago, Isro was desperate to develop the cryogenic technology for its GSLV rocket in order to lift heavier payload of over 3-4 tonnnes into the geo orbit at 36,000km altitude, from where it could send its spacecraft to deep space or other planets. This was because Isro’s mainstay rocket PSLV without a cryogenic engine, could deliver payload only up to 1.7 tonne to the lower earth orbit up to an altitude of 600 km. It could go to geo tranfer orbit but at reduced payload. Though PSLV was used for launching India’s first moon mission Chandrayaan-1 in 2008 and Mars Orbiter Mission in 2014, in both the cases the payload was not above 1.4 tonne.

In early 1990s, India had approached the US, Soviet Union, Japan and France for cryo technology. Only Soviet Union came forward. But Moscow too stepped back when the US cited a violation of the international Missile Technology Control Regime (MTCR) to threaten it and imposed sanctions on Isro and Soviet Union's launch service provider Glavkosmos. Though the US threat stalled the transfer of Russian cryo technology, India still managed to import seven such engines from Glavkosmos. The engines were used to launch initial versions of GSLV rockets. But desperate to have an indigenous technology, Isro scientists worked tirelessly for over two decades to develop its own cryo engine. Being a complex system, Isro still faces some hiccups in its cryo stage like the July 15 snag.

The July 15 glitch was due to a leak in helium bottle joint in the cryo upper stage (Helium is used to maintain pressure in the cryogenic chamber). The leak occurred after the propellant tanks were filled with liquid hydrogen, the fuel, and liquid oxygen, the oxidiser. With the pressure not holding in the cryogenic chamber, the mission control centre had no option but to call off the liftoff.

Why the July 2019 launch was postponed

Arun Ram, Isro pinpoints GSLV-MkIII leak to 'nipple joint' of cryo engine, July 17, 2019: The Times of India

CHENNAI: Working overnight on the aborted Chandrayaan-2, the Indian Space Research Organisation (Isro) teams have pinpointed the leak in the GSLV-MkIII cryogenic engine to a ‘nipple joint’ of the helium gas bottle that supplies pressure to the fuel and oxidiser. Why it happened remains the crucial question Isro engineers are trying to answer.

Isro had aborted the Chandrayaan-2 launch 56 minutes before its scheduled lift-off at 2.51am on Monday. “The good news is that we can fix the leak without dismantling the rocket, since there is an access door to the gas bottle which is atop the oxygen tank,” a senior scientist told TOI. “The bad news is that unless we ascertain the reason for the leak, there is a probability of the problem recurring.” Not having to dismantle means Chandrayaan-2 may be able to fly before the end of the July launch window, but a final failure analysis will be available only in a day or two.

Sources told TOI that the leak wasn’t serious enough to impair the flight, but Isro decided to apply “abundant caution,” given the importance of the Rs 978-crore project that would make India only the fourth country – after the US, Russia and China – to land a craft on the lunar surface.

The helium gas bottle has a capacity of 34 litres and it was to be pressured up to 350 bars before regulating the output to 50 bars. “The leak was bringing down the pressure by four bars per minute. The rocket could’ve still made it, but we didn’t want to take any chances,” a source said.

A veteran of Isro failure analysis said teams would now look at the proximity of the faulty ‘nipple joint’ to the oxidiser tank that stores liquid oxygen at minus 183 degrees Celsius. “If the joint was close to such a low temperature, the reason could be micro shrinkage of the joint. In that case we need to insulate it or shift the joint away from the coldest point,” the scientist said.

Bigger leaks in the gas bottle can, besides affecting combustion and velocity, send the rocket spinning out of control. For now, Isro is confident of rectifying the fault and flying to moon without much delay.

More than 7,000 people from across the country had gone to the Sriharikota spaceport to witness the Monday launch. President Ram Nath Kovind was with senior Isro scientists at the mission control centre when the launch was called off at 1.55am.

Making lunar spacecraft think and act

U Tejonmayam, July 23, 2019: The Times of India


Within a week after Chandrayaan-1 was launched in 2008, scientists had to abort a manoeuvre of the spacecraft as all ground stations lost visibility. But that did not hamper the mission, as the spacecraft used its own electronic brain fed with commands in advance to manoeuvre on its own. Six years later, it is with the same ebrain that Mangalyaan found its way to Mars by correcting its altitude and the position of its antenna and solar panels during its 300-day journey. Rocket science calls it autonomy.

With Chandrayaan-2, Isro will once again demonstrate its mastery over autonomy when Vikram will soft land on the south pole on its own sans intervention from ground control. And that is going to keep India in good stead as Isro plans future interplanetary missions.

“It’s like an aircraft on auto-pilot. Vikram will have only one chance. It has to see the landing place correctly, reduce its velocity and land with minimal impact,” said Chandrayaan-1 project director Mylsamy Annadurai.

Rover Pragyan, too, will work on its own. It will have the ability to ‘think’ it is not in the right position and move back to its last step if it does not receive commands from the ground station.

India has planned seven inter-planetary missions in the next 10 years, starting with Xposat to study cosmic radiation in 2020, Aditya L1 to Sun in 2021, Mars Orbiter Mission-2 in 2022, a date with Venus in 2023, Lunar Polar Exploration or Chandrayaan-3 in 2024 and Exoworlds, an exploration outside the solar system, in 2028.

Simultaneously, as it adds more satellites to meet its demands, monitoring and controlling from the ground could become humanly impossible. Injecting smarter satellites into orbit meant it can decide autonomously what, when and how to carry out operational tasks, like capturing images of Earth, analyse and process them before selecting important data for downloading to the earth station. This also allows satellites to communicate with each other and do tasks like identifying a target to be monitored continuously, like a moving vehicle.

“This is an electronics revolution. It simply puts intelligence into a satellite,” said TK Alex, former director of UR Rao Satellite Centre. “On the software side, India is on the top.”

Costs

Chandrayaan 1 and 2, vis-à-vis the world

The cost of key USSR, US, Japanese, European, Chinese lunar missions and a comparison of the costs with Chandrayaan 1 and 2
From: July 2, 2019: The Times of India


See graphic:

The cost of key USSR, US, Japanese, European, Chinese lunar missions and a comparison of the costs with Chandrayaan 1 and 2

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox
Translate